- 1.(6pts)Let D be the region in the plane bounded by the circle $x^2 + y^2 = 4$ with density $\rho(x,y) = x^2 + y^2$. Which of the following statements is true:
 - (a) The center of mass of D is the origin.
 - (b) The center of mass of D is (1,1)
 - (c) The center of mass of D is (0.5, -0.5)
 - (d) The center of mass of D is (-0.5, 0.5)
 - (e) The center of mass of D is (2, -2)

Solution. The region D and the density $\rho(x,y)$ are symmetric about the x-axis, hence the center of mass is located in the x-axis. Similarly, D and $\rho(x,y)$ are symmetric about the y-axis, so the center of mass is located in the y-axis. Therefore, the center of mass of D is the origin.

- **2.**(6pts) Calculate the volume enclosed by the paraboloid $z = x^2 + y^2$ and the plane z = 1.

- (a) $\frac{\pi}{2}$ (b) π (c) $\frac{1}{2}$ (d) 2π
- (e) 1

Solution. Using cylindrical co-ordinates, the paraboloid is $z=r^2$. The surfaces intersect when $r^2 = 1$, ie, r = 1. It follows that the volume is

$$\int_0^{2\pi} \int_0^1 \int_{r^2}^1 r \, dz \, dr \, d\phi = 2\pi \int_0^1 \left(r - r^3 \right) \, dr = 2\pi \left(\frac{r^2}{2} - \frac{r^4}{4} \right) \Big|_0^1 = \frac{\pi}{2}$$

- **3.**(6pts) Let S be the solid inside both the cone $z = \sqrt{x^2 + y^2}$ and the sphere $x^2 + y^2 + z^2 = 1$. Write the iterated integral $\iiint z \, dV$ in spherical coordinates.
 - (a) $\int_{-\infty}^{2\pi} \int_{-\infty}^{\frac{\pi}{4}} \int_{-\infty}^{1} \rho^3 \cos \phi \sin \phi \, d\rho \, d\phi \, d\theta$
- (b) $\int_{-\infty}^{2\pi} \int_{-\infty}^{\frac{\pi}{2}} \int_{-\infty}^{1} \rho^3 \cos \phi \sin \phi \, d\rho \, d\phi \, d\theta$
- (c) $\int_{-\infty}^{2\pi} \int_{-\infty}^{\pi} \int_{-\infty}^{1} \rho^3 \cos \phi \sin \phi \, d\rho \, d\phi \, d\theta$
- (d) $\int_{-\infty}^{2\pi} \int_{-\infty}^{\frac{\pi}{4}} \int_{-\infty}^{1} \rho^2 \cos \phi \sin \phi \, d\rho \, d\phi \, d\theta$

(e) $\int_{-\infty}^{2\pi} \int_{-\infty}^{\frac{\pi}{4}} \int_{-\infty}^{1} \rho \cos \phi \, d\rho \, d\phi \, d\theta$

Solution. The cone $z=\sqrt{x^2+y^2}$ is the same as $\phi=\frac{\pi}{4}$ in spherical coordinates and the sphere $x^2 + y^2 + z^2 = 1$ is $\rho = 1$. The limits of integration are therefore $0 \le \rho \le 1$, $0 \le \phi \le \frac{\pi}{4}$ and $0 \le \theta \le 2\pi$. The iterated integral is therefore

$$\int_{0}^{2\pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{1} \rho^{3} \cos \phi \sin \phi \, d\rho \, d\phi \, d\theta$$

- **4.**(6pts) Let a thin wire in space be in the shape of the helix C given by $\mathbf{r}(t) = \left\langle \cos 3t, \sin 3t, 3\sqrt{3} \ t \right\rangle$, $0 \le t \le 2\pi$. Let the linear density at (x, y, z) be given by $\mu(x, y, z) = \frac{z}{x^2 + y^2}$. Compute the mass of the wire.
 - (a) $36\sqrt{3} \pi^2$
- (b) $216\sqrt{3} \pi^2$ (c) $36\sqrt{3} \pi$ (d) $6\sqrt{3} \pi^2$

- (e) 12π

Solution. Recall

$$\int_C \mu(x, y, z) ds = \int_0^{2\pi} f(\mathbf{r}(t)) |\mathbf{r}'(t)| dt$$

First, we find $\mathbf{r}'(t)$:

$$\mathbf{r}'(t) = \left\langle -3\sin 3t, 3\cos 3t, 3\sqrt{3} \right\rangle$$

then

$$|\mathbf{r}'(t)| = \sqrt{(-3\sin 3t)^2 + (3\cos 3t)^2 + (3\sqrt{3})^2} = \sqrt{9+27} = \sqrt{36} = 6$$

So, the mass is

$$\int_{C} \mu(x, y, z) ds = \int_{0}^{2\pi} \mu(\mathbf{r}(t)) |\mathbf{r}'(t)| dt$$

$$= \int_{0}^{2\pi} \frac{3\sqrt{3} t}{(\cos 3t)^{2} + (\sin 3t)^{2}} (6) dt$$

$$= \int_{0}^{2\pi} 18\sqrt{3} t dt$$

$$= 9\sqrt{3} t^{2} \Big|_{0}^{2\pi} = 36\sqrt{3}\pi^{2}$$

5.(6pts) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = -2xy\mathbf{i} + 4y\mathbf{j} + \mathbf{k}$ and $\mathbf{r} = t\mathbf{i} + t^2\mathbf{j} + \mathbf{k}$, $0 \le t \le 2$.

- (a) 24
- (b) 12
- (c) 48
- (d) 18
- (e) 32

Solution. Since $\mathbf{F}(\mathbf{r}(t)) = <-2t^3, 4t^2, 1>$ and $\mathbf{r}'=<1, 2t, 0>$. We get that $\mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}'(\mathbf{t})=$ $6t^3$. Thus $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^2 6t^3 dt = 24$.

6.(6pts) Let $\mathbf{F} = \nabla f$ where $f(x,y) = x^2 \cos(y) + e^{\sin(y)}$. Evaluate the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the semicircle $x^2 + y^2 = 1, x \ge 0$ and the orientation is counterclockwise.

- (a) $e^{\sin(1)} e^{\sin(-1)}$
- (b) $e^{\sin(-1)} e^{\sin(1)}$
- (c) -2

(d) 2

(e) $\cos(1) + \cos(-1)$

Solution. Using the Fundamental Theorem of Line Integrals, we see that

$$\int_C \mathbf{F} \cdot d\mathbf{r} = f(0,1) - f(0,-1) = (0 + e^{\sin(1)}) - (0 + e^{\sin(-1)}) = e^{\sin(1)} - e^{\sin(-1)}$$

7.(6pts) Rewrite the iterated integral

$$\int_0^3 \int_0^{2-\frac{2z}{3}} \int_0^{6-2z-3y} \frac{e^z}{(z+2)(6-z)} \, dx \, dy \, dz$$

as an iterated integral dy dx dz. In other words, switch dx dy to dy dx.

(a)
$$\int_0^3 \int_0^{6-2z} \int_0^{\frac{6-2z-x}{3}} \frac{e^z}{(z+2)(6-z)} dy dx dz$$

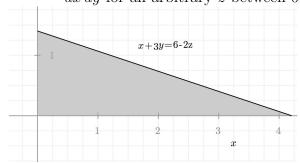
(b)
$$\int_0^3 \int_0^{2-\frac{2z}{3}} \int_0^{6-2z-3x} \frac{e^z}{(z+2)(6-z)} \, dy \, dx \, dz$$

(c)
$$\int_0^3 \int_0^{6-2z} \int_0^{6-2z-3z} \frac{e^z}{(z+2)(6-z)} dy dx dz$$

(d)
$$\int_0^3 \int_0^{6-2z-3x} \int_0^{6-2z} \frac{e^z}{(z+2)(6-z)} \, dy \, dx \, dz$$

(e)
$$\int_0^3 \int_0^{6-2y-3x} \int_0^{6-2x} \frac{e^z}{(z+2)(6-z)} \, dy \, dx \, dz$$

Solution. The outer integral is the same in both cases so start by drawing the plane region determined by $\int_0^{2-\frac{2z}{3}} \int_0^{6-2z-3y} \cdots dx \, dy$ for an arbitrary z between 0 and 1.



The integral in the other order has the outside integral running from x = 0 to x = 6 - 2z. In the inner integral, y starts at 0 and runs to $\frac{6 - 2z - x}{3}$

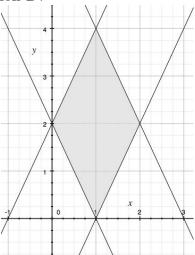
8.(10pts) Let S be the "ice-cream cone" bounded below by $z = \sqrt{3(x^2 + y^2)}$ and above by $x^2 + y^2 + z^2 = 4$. Use spherical coordinates to express the volume of S as an integral. **Do** not evaluate the integral.

Solution. The sphere $x^2 + y^2 + z^2 = 4$ is $\rho = 2$ and the cone $z = \sqrt{3(x^2 + y^2)}$ transforms as $\phi = \frac{\pi}{6}$. The volume is then given by

$$\iiint\limits_{C} dV = \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{6}} \int_{0}^{2} \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$$

9.(10pts) Consider the double integral $\iint_D y \, dA$ where D is the region bounded by y + 2x = 2, y + 2x = 6, y - 2x = -2, and y - 2x = 2. Let T^{-1} be the transformation defined by u = y + 2x and w = y - 2x. Describe the region R such that T(R) = D and write $\iint y \, dA$ as a double integral over R. Note $x = \frac{1}{4}(u - w)$ and $y = \frac{1}{2}(u + w)$. Do not evaluate the integral.

Solution. First let draw the region D.



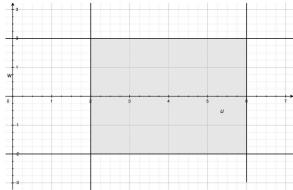
In terms of u and w, y + 2x = 2 is equivalent to u = 2.

In terms of u and w, y + 2x = 6 is equivalent to u = 6.

In terms of u and w, y - 2x = 2 is equivalent to w = 2.

In terms of u and w, y - 2x = 2 is equivalent to w = -2.

The region R is the rectangle with corners (u, w) equal to (2, 2), (6, 2), (2, -2), (6, -2). Here is a picture.



Next So
$$\frac{\partial(x,y)}{\partial(u,w)} = \det \begin{vmatrix} \frac{\partial \frac{1}{4}(u-w)}{\partial u} & \frac{\partial \frac{1}{4}(u-w)}{\partial w} \\ \frac{\partial \frac{1}{2}(u+w)}{\partial u} & \frac{\partial \frac{1}{2}(u+w)}{\partial w} \end{vmatrix} = \det \begin{vmatrix} \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix} = \frac{1}{8} - \left(-\frac{1}{8}\right) = \frac{1}{4}.$$
Then

$$\iint\limits_{D} y \, dA = \iint\limits_{R} \left(\frac{u+w}{2} \cdot \frac{1}{4} \right) \, dA$$

Solution.

$$\frac{\partial p}{\partial y} = x^4 e^{x^2 y} + 2y$$

SO

$$p = x^2 e^{x^2 y} + y^2 + h(x)$$

$$\frac{\partial p}{\partial x} = \frac{\partial x^2 e^{x^2 y} + y^2 + h(x)}{\partial x} = 2xe^{x^2 y} + x^2(2xy)e^{x^2 y} + h'(x) = 2xe^{x^2 y} + 2x^3 ye^{x^2 y} + 2xe^{x^2}$$
so
$$h'(x) = 2xe^{x^2}$$

$$p = x^2 e^{x^2 y} + y^2 + e^{x^2}$$

OR

Start with

$$\frac{\partial p}{\partial x} = 2xe^{x^2y} + 2x^3ye^{x^2y} + 2xe^{x^2}$$

This is harder to integrate but it can be done. An anti-derivative of the first term is $\frac{e^{x^2y}}{y}$. An anti-derivative of the third term is e^{x^2} . To find an anti-derivative for the second term, use the substitution $t = x^2$, so dt = 2x dx and $\int 2x^3 y e^{x^2 y} dx = \int y t e^{yt} dt$. This is a parts:

 $u = t \ dv = e^{yt} dt$ so du = dt and $v = \frac{e^{yt}}{y}$.

Hence $\int 2x^3ye^{x^2y}\,dx = \int yte^{yt}dt = yt\frac{e^{yt}}{y} - y\int \frac{e^{yt}}{y}\,dt = te^{yt} - \frac{e^{yt}}{y} = x^2e^{x^2y} - \frac{e^{x^2y}}{y}.$ Therefore

$$p = \frac{e^{x^2y}}{y} + x^2e^{x^2y} - \frac{e^{x^2y}}{y} + e^{x^2} + h(y) = x^2e^{x^2y} + e^{x^2} + h(y)$$

Then

$$\frac{\partial p}{\partial y} = x^4 e^{x^2 y} + h'(y) = x^4 e^{x^2 y} + 2y$$

so h'(y) = 2y and $h(y) = y^2$ so

$$p = x^2 e^{x^2 y} + e^{x^2} + y^2$$

is a potential function.

11.(10pts) Use Green's Theorem to write down a double integral over the shaded region in Figure 12 which is equal to the line integral

$$\int_C (y^2 + (\sin x)e^x - 2x) dx + (x^2 + (y\cos y)e^{y^2} + 2 - 3x)dy$$

along the boundary of the region.

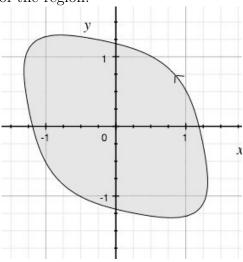


Figure 12.

Solution. Let D be the shaded region. $M = y^2 + (\sin x)e^x - 2x$ and $\frac{\partial M}{\partial y} = 2y$. $N = x^2 + (y\cos y)e^{y^2} + 2 - 3x$ and $\frac{\partial N}{\partial x} = 2x - 3$. Hence $\int_{\partial D} (y^2 + (\sin x)e^x - 2x)dx + (x^2 + (y\cos y)e^{y^2} + 2 - 3x)dy = \iint_{D} (2x - 3 + 2y) dA$.

Now $\int_{\partial D} (y^2 + (\sin x)e^x - 2x)dx + (x^2 + (y\cos y)e^{y^2} + 2 - 3x)dy$ is the line integral around the boundary curve oriented so that the region is on your left. This is the given orientation on C so $\int_C (y^2 + (\sin x)e^x - 2x)dx + (x^2 + (y\cos y)e^{y^2} + 2 - 3x)dy = \iint_D (2x - 3 + 2y) dA$.